Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(7): 112788, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436896

RESUMO

Perineuronal nets (PNNs) surround specific neurons in the brain and are involved in various forms of plasticity and clinical conditions. However, our understanding of the PNN role in these phenomena is limited by the lack of highly quantitative maps of PNN distribution and association with specific cell types. Here, we present a comprehensive atlas of Wisteria floribunda agglutinin (WFA)-positive PNNs and colocalization with parvalbumin (PV) cells for over 600 regions of the adult mouse brain. Data analysis shows that PV expression is a good predictor of PNN aggregation. In the cortex, PNNs are dramatically enriched in layer 4 of all primary sensory areas in correlation with thalamocortical input density, and their distribution mirrors intracortical connectivity patterns. Gene expression analysis identifies many PNN-correlated genes. Strikingly, PNN-anticorrelated transcripts are enriched in synaptic plasticity genes, generalizing PNNs' role as circuit stability factors.


Assuntos
Matriz Extracelular , Parvalbuminas , Animais , Camundongos , Parvalbuminas/metabolismo , Camundongos Endogâmicos C57BL , Matriz Extracelular/metabolismo , Neurônios/metabolismo , Córtex Cerebral/metabolismo
2.
Acta Neuropathol Commun ; 11(1): 34, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882863

RESUMO

Mutations in the solute carrier family 6-member 8 (Slc6a8) gene, encoding the protein responsible for cellular creatine (Cr) uptake, cause Creatine Transporter Deficiency (CTD), an X-linked neurometabolic disorder presenting with intellectual disability, autistic-like features, and epilepsy. The pathological determinants of CTD are still poorly understood, hindering the development of therapies. In this study, we generated an extensive transcriptomic profile of CTD showing that Cr deficiency causes perturbations of gene expression in excitatory neurons, inhibitory cells, and oligodendrocytes which result in remodeling of circuit excitability and synaptic wiring. We also identified specific alterations of parvalbumin-expressing (PV+) interneurons, exhibiting a reduction in cellular and synaptic density, and a hypofunctional electrophysiological phenotype. Mice lacking Slc6a8 only in PV+ interneurons recapitulated numerous CTD features, including cognitive deterioration, impaired cortical processing and hyperexcitability of brain circuits, demonstrating that Cr deficit in PV+ interneurons is sufficient to determine the neurological phenotype of CTD. Moreover, a pharmacological treatment targeted to restore the efficiency of PV+ synapses significantly improved cortical activity in Slc6a8 knock-out animals. Altogether, these data demonstrate that Slc6a8 is critical for the normal function of PV+ interneurons and that impairment of these cells is central in the disease pathogenesis, suggesting a novel therapeutic venue for CTD.


Assuntos
Encefalopatias Metabólicas Congênitas , Proteínas de Membrana Transportadoras , Parvalbuminas , Animais , Camundongos , Creatina , Neurônios , Proteínas de Membrana Transportadoras/genética
3.
J Neural Eng ; 20(2)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893458

RESUMO

Objective.The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it.Approach.Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization.Main results.The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively.Significance.The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments.


Assuntos
Cálcio , Córtex Visual , Humanos , Animais , Camundongos , Redes Neurais de Computação , Algoritmos , Córtex Visual/fisiologia , Campos Visuais
4.
Cell Mol Life Sci ; 80(1): 28, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607453

RESUMO

Little is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting). We found that fasting enhanced K-bhb in a variety of proteins including histone H3. ChIP-seq experiments showed that K9 beta-hydroxybutyrylation of H3 (H3K9-bhb) was significantly enriched by fasting on more than 8000 DNA loci. Transcriptomic analysis showed that H3K9-bhb on enhancers and promoters correlated with active gene expression. One of the most enriched functional annotations both at the epigenetic and transcriptional level was "circadian rhythms''. Indeed, we found that the diurnal oscillation of specific transcripts was modulated by fasting at distinct zeitgeber times both in the cortex and suprachiasmatic nucleus. Moreover, specific changes in locomotor activity daily features were observed during re-feeding after 48-h fasting. Thus, our results suggest that fasting remarkably impinges on the cerebral cortex transcriptional and epigenetic landscape, and BHB acts as a powerful epigenetic molecule in the brain through direct and specific histone marks remodeling in neural tissue cells.


Assuntos
Histonas , Corpos Cetônicos , Camundongos , Animais , Histonas/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Encéfalo/metabolismo , Expressão Gênica
5.
Neuropsychopharmacology ; 48(6): 877-886, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35945276

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.


Assuntos
Síndromes Epilépticas , Espasmos Infantis , Camundongos , Animais , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Córtex Cerebral/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/uso terapêutico
6.
Neurotherapeutics ; 19(6): 1886-1904, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109452

RESUMO

Although delivery of a wild-type copy of the mutated gene to cells represents the most effective approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for treatment of brain disorders. Herein, we develop a cross-correction-based strategy to enhance the efficiency of a gene therapy for CDKL5 deficiency disorder, a severe neurodevelopmental disorder caused by CDKL5 gene mutations. We created a gene therapy vector that produces an Igk-TATk-CDKL5 fusion protein that can be secreted via constitutive secretory pathways and, due to the cell-penetration property of the TATk peptide, internalized by cells. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to higher CDKL5 protein replacement due to secretion and penetration of the TATk-CDKL5 protein into the neighboring cells. Importantly, Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with vehicle or AAVPHP.B_CDKL5 vector-treated Cdkl5 KO mice. In conclusion, we provide the first evidence that a gene therapy based on a cross-correction approach is more effective at compensating Cdkl5-null brain defects than gene therapy based on the expression of the native CDKL5, opening avenues for the development of this innovative approach for other monogenic diseases.


Assuntos
Proteínas Serina-Treonina Quinases , Espasmos Infantis , Animais , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Espasmos Infantis/terapia , Espasmos Infantis/metabolismo , Terapia Genética
7.
Hum Mol Genet ; 31(23): 4107-4120, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35861639

RESUMO

Cyclin-dependent kinase-like 5 (Cdkl5) deficiency disorder (CDD) is a severe neurodevelopmental condition caused by mutations in the X-linked Cdkl5 gene. CDD is characterized by early-onset seizures in the first month of life, intellectual disability, motor and social impairment. No effective treatment is currently available and medical management is only symptomatic and supportive. Recently, mouse models of Cdkl5 disorder have demonstrated that mice lacking Cdkl5 exhibit autism-like phenotypes, hyperactivity and dysregulations of the arousal system, suggesting the possibility to use these features as translational biomarkers. In this study, we tested Cdkl5 male and female mutant mice in an appetitive operant conditioning chamber to assess cognitive and motor abilities, and performed pupillometry to assess the integrity of the arousal system. Then, we evaluated the performance of artificial intelligence models to classify the genotype of the animals from the behavioral and physiological phenotype. The behavioral results show that CDD mice display impulsivity, together with low levels of cognitive flexibility and perseverative behaviors. We assessed arousal levels by simultaneously recording pupil size and locomotor activity. Pupillometry reveals in CDD mice a smaller pupil size and an impaired response to unexpected stimuli associated with hyperlocomotion, demonstrating a global defect in arousal modulation. Finally, machine learning reveals that both behavioral and pupillometry parameters can be considered good predictors of CDD. Since early diagnosis is essential to evaluate treatment outcomes and pupillary measures can be performed easily, we proposed the monitoring of pupil size as a promising biomarker for CDD.


Assuntos
Pupila , Espasmos Infantis , Animais , Camundongos , Masculino , Feminino , Camundongos Knockout , Inteligência Artificial , Espasmos Infantis/genética , Comportamento Impulsivo , Proteínas Serina-Treonina Quinases
8.
Med Image Anal ; 80: 102500, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35667329

RESUMO

Exploiting well-labeled training sets has led deep learning models to astonishing results for counting biological structures in microscopy images. However, dealing with weak multi-rater annotations, i.e., when multiple human raters disagree due to non-trivial patterns, remains a relatively unexplored problem. More reliable labels can be obtained by aggregating and averaging the decisions given by several raters to the same data. Still, the scale of the counting task and the limited budget for labeling prohibit this. As a result, making the most with small quantities of multi-rater data is crucial. To this end, we propose a two-stage counting strategy in a weakly labeled data scenario. First, we detect and count the biological structures; then, in the second step, we refine the predictions, increasing the correlation between the scores assigned to the samples and the raters' agreement on the annotations. We assess our methodology on a novel dataset comprising fluorescence microscopy images of mice brains containing extracellular matrix aggregates named perineuronal nets. We demonstrate that we significantly enhance counting performance, improving confidence calibration by taking advantage of the redundant information characterizing the small sets of available multi-rater data.


Assuntos
Incerteza , Animais , Humanos , Camundongos
10.
Cell Rep ; 38(2): 110212, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021093

RESUMO

Exposing animals to an enriched environment (EE) has dramatic effects on brain structure, function, and plasticity. The poorly known "EE-derived signals'' mediating the EE effects are thought to be generated within the central nervous system. Here, we shift the focus to the body periphery, revealing that gut microbiota signals are crucial for EE-driven plasticity. Developmental analysis reveals striking differences in intestinal bacteria composition between EE and standard rearing (ST) mice, as well as enhanced levels of short-chain fatty acids (SCFA) in EE mice. Depleting the microbiota of EE mice with antibiotics strongly decreases SCFA and prevents activation of adult ocular dominance plasticity, spine dynamics, and microglia rearrangement. SCFA treatment in ST mice mimics EE induction of ocular dominance plasticity and microglial remodeling. Remarkably, transferring the microbiota of EE mice to ST recipients activates adult ocular dominance plasticity. Thus, experience-dependent changes in gut microbiota regulate brain plasticity.


Assuntos
Microbioma Gastrointestinal/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/metabolismo , Animais , Encéfalo/fisiologia , Dominância Ocular/fisiologia , Meio Ambiente , Ácidos Graxos Voláteis/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Visual/microbiologia
11.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34518364

RESUMO

Pupil dynamics alterations have been found in patients affected by a variety of neuropsychiatric conditions, including autism. Studies in mouse models have used pupillometry for phenotypic assessment and as a proxy for arousal. Both in mice and humans, pupillometry is noninvasive and allows for longitudinal experiments supporting temporal specificity; however, its measure requires dedicated setups. Here, we introduce a convolutional neural network that performs online pupillometry in both mice and humans in a web app format. This solution dramatically simplifies the usage of the tool for the nonspecialist and nontechnical operators. Because a modern web browser is the only software requirement, this choice is of great interest given its easy deployment and setup time reduction. The tested model performances indicate that the tool is sensitive enough to detect both locomotor-induced and stimulus-evoked pupillary changes, and its output is comparable to state-of-the-art commercial devices.


Assuntos
Aplicativos Móveis , Animais , Nível de Alerta , Humanos , Camundongos , Pupila
12.
Aging Dis ; 12(3): 764-785, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34094641

RESUMO

CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. Children affected by CDD display a clinical phenotype characterized by early-onset epilepsy, intellectual disability, motor impairment, and autistic-like features. Although the clinical aspects associated with CDKL5 mutations are well described in children, adults with CDD are still under-characterized. Similarly, most animal research has been carried out on young adult Cdkl5 knockout (KO) mice only. Since age represents a risk factor for the worsening of symptoms in many neurodevelopmental disorders, understanding age differences in the development of behavioral deficits is crucial in order to optimize the impact of therapeutic interventions. Here, we compared young adult Cdkl5 KO mice with middle-aged Cdkl5 KO mice, at a behavioral, neuroanatomical, and molecular level. We found an age-dependent decline in motor, cognitive, and social behaviors in Cdkl5 KO mice, as well as in breathing and sleep patterns. The behavioral decline in older Cdkl5 KO mice was not associated with a worsening of neuroanatomical alterations, such as decreased dendritic arborization or spine density, but was paralleled by decreased neuronal survival in different brain regions such as the hippocampus, cortex, and basal ganglia. Interestingly, we found increased ß-galactosidase activity and DNA repair protein levels, γH2AX and XRCC5, in the brains of older Cdkl5 KO mice, which suggests that an absence of Cdkl5 accelerates neuronal senescence/death by triggering irreparable DNA damage. In summary, this work provides evidence that CDKL5 may play a fundamental role in neuronal survival during brain aging and suggests a possible worsening with age of the clinical picture in CDD patients.

13.
EMBO Rep ; 21(11): e50431, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33026181

RESUMO

Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal nets, and restored their juvenile chemical composition. Activated adult plasticity had the typical functional and proteomic signature of critical period plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity brakes in specific cortical circuits. These data indicate that miR-29a is a regulator of the plasticity brakes promoting age-dependent stabilization of visual cortical connections.


Assuntos
MicroRNAs , Córtex Visual , Animais , Dominância Ocular/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Plasticidade Neuronal/genética , Proteômica
14.
Sci Rep ; 10(1): 18361, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110151

RESUMO

Creatine Transporter Deficiency (CTD) is an inborn error of metabolism presenting with intellectual disability, behavioral disturbances and epilepsy. There is currently no cure for this disorder. Here, we employed novel biomarkers for monitoring brain function, together with well-established behavioral readouts for CTD mice, to longitudinally study the therapeutic efficacy of cyclocreatine (cCr) at the preclinical level. Our results show that cCr treatment is able to partially correct hemodynamic responses and EEG abnormalities, improve cognitive deficits, revert autistic-like behaviors and protect against seizures. This study provides encouraging data to support the potential therapeutic benefit of cyclocreatine or other chemically modified lipophilic analogs of Cr.


Assuntos
Transtorno Autístico/etiologia , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Transtornos Cognitivos/etiologia , Creatina/deficiência , Creatinina/análogos & derivados , Epilepsia/etiologia , Retardo Mental Ligado ao Cromossomo X/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Transtorno Autístico/tratamento farmacológico , Barreira Hematoencefálica , Encefalopatias Metabólicas Congênitas/complicações , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Creatinina/uso terapêutico , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/tratamento farmacológico , Hemodinâmica/efeitos dos fármacos , Masculino , Retardo Mental Ligado ao Cromossomo X/complicações , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Convulsões/tratamento farmacológico , Convulsões/etiologia , Comportamento Estereotipado/efeitos dos fármacos
15.
Brain Commun ; 2(2): fcaa089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954336

RESUMO

Creatine transporter deficiency is a metabolic disorder characterized by intellectual disability, autistic-like behaviour and epilepsy. There is currently no cure for creatine transporter deficiency, and reliable biomarkers of translational value for monitoring disease progression and response to therapeutics are sorely lacking. Here, we found that mice lacking functional creatine transporter display a significant alteration of neural oscillations in the EEG and a severe epileptic phenotype that are recapitulated in patients with creatine transporter deficiency. In-depth examination of knockout mice for creatine transporter also revealed that a decrease in EEG theta power is predictive of the manifestation of spontaneous seizures, a frequency that is similarly affected in patients compared to healthy controls. In addition, knockout mice have a highly specific increase in haemodynamic responses in the cerebral cortex following sensory stimuli. Principal component and Random Forest analyses highlighted that these functional variables exhibit a high performance in discriminating between pathological and healthy phenotype. Overall, our findings identify novel, translational and non-invasive biomarkers for the analysis of brain function in creatine transporter deficiency, providing a very reliable protocol to longitudinally monitor the efficacy of potential therapeutic strategies in preclinical, and possibly clinical, studies.

16.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32276923

RESUMO

Operant conditioning (OC) is a classical paradigm and a standard technique used in experimental psychology in which animals learn to perform an action to achieve a reward. By using this paradigm, it is possible to extract learning curves and measure accurately reaction times (RTs). Both these measurements are proxy of cognitive capabilities and can be used to evaluate the effectiveness of therapeutic interventions in mouse models of disease. Here, we describe a fully 3D printable device that is able to perform OC on freely moving mice, while performing real-time tracking of the animal position. We successfully trained six mice, showing stereotyped learning curves that are highly reproducible across mice and reaching >70% of accuracy after 2 d of conditioning. Different products for OC are commercially available, though most of them do not provide customizable features and are relatively expensive. This data demonstrate that this system is a valuable alternative to available state-of-the-art commercial devices, representing a good balance between performance, cost, and versatility in its use.


Assuntos
Condicionamento Operante , Recompensa , Animais , Camundongos
17.
Neuroscience ; 424: 205-210, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31901258

RESUMO

Retinitis Pigmentosa (RP) is a class of inherited disorders caused by the progressive death of photoreceptors in the retina. RP is still orphan of an effective treatment, with increasing optimism deriving from research aimed at arresting neurodegeneration or replacing light-responsive elements. All these therapeutic strategies rely on the functional integrity of the visual system downstream of photoreceptors. Whereas the inner retinal structure and optic radiation are known to be considerably preserved at least in early stages of RP, very little is known about the visual cortex. Remarkably, it remains completely unclear whether visual cortex plasticity is still present in RP. Using a well-established murine model of RP, the rd10 mouse, we report that visual cortical circuits retain high levels of plasticity, preserving their capability of input-dependent remodelling even at a late stage of retinal degeneration.


Assuntos
Plasticidade Neuronal/fisiologia , Retinite Pigmentosa/fisiopatologia , Córtex Visual/fisiologia , Animais , Eletrorretinografia/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Retina/fisiopatologia , Retinite Pigmentosa/genética
18.
Hum Mol Genet ; 28(17): 2851-2861, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108505

RESUMO

CDKL5 deficiency disorder (CDD) is a neurodevelopmental disorder characterized by a severe global developmental delay and early-onset seizures. Notably, patients show distinctive visual abnormalities often clinically diagnosed as cortical visual impairment. However, the involvement of cerebral cortical dysfunctions in the origin of the symptoms is poorly understood. CDD mouse models also display visual deficits, and cortical visual responses can be used as a robust biomarker in CDKL5 mutant mice. A deeper understanding of the circuits underlying the described visual deficits is essential for directing preclinical research and translational approaches. Here, we addressed this question in two ways: first, we performed an in-depth morphological analysis of the visual pathway, from the retina to the primary visual cortex (V1), of CDKL5 null mice. We found that the lack of CDKL5 produced no alteration in the organization of retinal circuits. Conversely, CDKL5 mutants showed reduced density and altered morphology of spines and decreased excitatory synapse marker PSD95 in the dorsal lateral geniculate nucleus and in V1. An increase in the inhibitory marker VGAT was selectively present in V1. Second, using a conditional CDKL5 knockout model, we showed that selective cortical deletion of CDKL5 from excitatory cells is sufficient to produce abnormalities of visual cortical responses, demonstrating that the normal function of cortical circuits is dependent on CDKL5. Intriguingly, these deficits were associated with morphological alterations of V1 excitatory and inhibitory synaptic contacts. In summary, this work proposes cortical circuit structure and function as a critically important target for studying CDD.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Síndromes Epilépticas/diagnóstico , Síndromes Epilépticas/genética , Fenótipo , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Animais , Biomarcadores , Corpos Geniculados , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Sinapses/metabolismo , Córtex Visual/metabolismo , Córtex Visual/fisiopatologia
19.
Mol Neurobiol ; 56(9): 5987-5997, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30706367

RESUMO

Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that mainly surround GABA-ergic parvalbumin-positive interneurons in the adult brain. Previous studies revealed a parallel between PNN formation and the closure of the critical period. Moreover, ocular dominance plasticity is enhanced in response to PNN manipulations in adult animals. However, the mechanisms through which perineuronal nets modulate plasticity are still poorly understood. Recent work indicated that perineuronal nets may convey molecular signals by binding and storing proteins with important roles in cellular communication. Here we report that semaphorin3A (Sema3A), a chemorepulsive axon guidance cue known to bind to important perineuronal net components, is necessary to dampen ocular dominance plasticity in adult rats. First, we showed that the accumulation of Sema3A in PNNs in the visual cortex correlates with critical period closure, following the same time course of perineuronal nets maturation. Second, the accumulation of Sema3A in perineuronal nets was significantly reduced by rearing animals in the dark in the absence of any visual experience. Finally, we developed and characterized a tool to interfere with Sema3A signaling by means of AAV-mediated expression of receptor bodies, soluble proteins formed by the extracellular domain of the endogenous Sema3A receptor (neuropilin1) fused to a human IgG Fc fragment. By using this tool to antagonize Sema3A signaling in the adult rat visual cortex, we found that the specific inhibition of Sema3A promoted ocular dominance plasticity. Thus, Sema3A accumulates in perineuronal nets in an experience-dependent manner and its presence in the mature visual cortex inhibits plasticity.


Assuntos
Envelhecimento/fisiologia , Dominância Ocular/fisiologia , Semaforina-3A/antagonistas & inibidores , Córtex Visual/fisiologia , Animais , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Neuropilinas/metabolismo , Agregados Proteicos , Ratos , Semaforina-3A/metabolismo , Solubilidade , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Hum Mol Genet ; 27(9): 1572-1592, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29474534

RESUMO

Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.


Assuntos
Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/terapia , Proteínas Serina-Treonina Quinases/metabolismo , Espasmos Infantis/metabolismo , Espasmos Infantis/terapia , Animais , Encéfalo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...